m2pool_core/internal/server/include/heavyHash/obtc.c

908 lines
21 KiB
C
Raw Normal View History

2025-04-10 07:27:24 +00:00
//! heavyhash extracted from optical bitcoin
//! 2022 barrystyle
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
#include <search.h>//qsort
#include<time.h>
#include "obtc.h"
#define M 64
#define N 64
bool Is4BitPrecision(const uint64_t matrix[64*64])
{
for (int i = 0; i < 64; ++i) {
for (int j = 0; j < 64; ++j) {
if (matrix[ i*64 + j] > 0xF)
return false;
}
}
return true;
}
double DiagonalMatrix_operator(DiagonalMatrix_t *p, int i, int j)
{
assert(i >= 0 && i < 64);
assert(j >= 0 && j < 64);
if (i == j) {
return p->pBlock[i];
} else {
return 0.0;
}
}
void DiagonalMatrix_release(DiagonalMatrix_t *p)
{
if (p->pBlock != NULL){
free(p->pBlock);
p->pBlock = NULL;
}
}
void DiagonalMatrix_init(DiagonalMatrix_t *p, const double values[])
{
p->pBlock = (double *)malloc(sizeof(double)*M);
//memset(pBlock, 0.0, sizeof(double)*L(64,64));
memcpy(p->pBlock, values, sizeof(double) * M);
p->operator = DiagonalMatrix_operator;
p->release = DiagonalMatrix_release;
}
void DiagonalMatrix_DiagonalMatrix(DiagonalMatrix_t *p)
{
p->operator = DiagonalMatrix_operator;
p->release = DiagonalMatrix_release;
}
//-----------------------------vector-------------------------------//
void vector_move(Vector_t *p, ptrdiff_t delta) {
p->ptr += delta;
}
Vector_t vector_slice(Vector_t v, size_t start) {
//assert(start >= 0 && start <= p->len);
Vector_t v_tmp;
v_tmp.pBlock = v.pBlock + start * v.delta;
v_tmp.len = v.len - start;
v_tmp.delta = v.delta;
return v_tmp;
}
double Vector_column_operator(Vector_t *p, size_t idx){
return p->pBlock[idx * p->delta];
}
double Vector_row_operator(Vector_t *p, size_t idx){
return p->pBlock[idx * p->delta];
}
void Vector_sync(Matrix_t *p, size_t idx, Vector_t vec, int offset){
for(int i = 0; i < vec.len; i++){
p->pBlock[idx+(offset+i)*N] = vec.pBlock[i];
}
}
void Vector_row_sync(Matrix_t *p, size_t idx, Vector_t vec, int offset){
for(int i = 0; i < vec.len; i++){
p->pBlock[offset+idx*N+i] = vec.pBlock[i];
}
}
//-----------------------------Martrix-------------------------------//
Matrix_t Matrix_clone(Matrix_t *p)
{
Matrix_t m;
m.pBlock = (double *)malloc(sizeof(double)*L(64,64));
memcpy(m.pBlock, p->pBlock, sizeof(double)*L(64,64));
return m;
}
void Matrix_filledwith(Matrix_t *p, const double values[])
{
//p->pBlock = (double *)malloc(sizeof(double)*L(64,64));
//memset(pBlock, 0.0, sizeof(double)*L(64,64));
memcpy(p->pBlock, values, sizeof(double) * L(64,64));
}
double Matrix_operator(Matrix_t *p, int i, int j)
{
assert(i >= 0 && i < N);
assert(j >= 0 && j < N);
return p->pBlock[i*N+j];
}
Vector_t Matrix_row(Matrix_t *p, int i)
{
Vector_t vec_tmp;
vec_tmp.len = N;
vec_tmp.delta = 1;
vec_tmp.pBlock = p->pBlock + i*N;
//return Vector< const double >(this->pBlock + i * N, N, 1);
return vec_tmp;
}
Vector_t Matrix_column(Matrix_t *p, int j)
{
Vector_t vec_tmp;
vec_tmp.len = M;
vec_tmp.delta = N;
vec_tmp.pBlock = p->pBlock + j;
return vec_tmp;
//return Vector< double >(this->pBlock + j, M, N);
}
void Matrix_release(Matrix_t *p)
{
if (p->pBlock != NULL){
free(p->pBlock);
p->pBlock = NULL;
}
}
void Matrix_init(Matrix_t *p)
{
p->pBlock = (double *)malloc(sizeof(double)*L(64,64));
memset(p->pBlock, 0.0, sizeof(double)*L(64,64));
//memcpy(p->pBlock, values, sizeof(double) * L(64,64));
}
void Matrix_def(Matrix_t *p)
{
//p->clone = Matrix_clone;
p->filledwith = Matrix_filledwith;
p->operator = Matrix_operator;
p->row = Matrix_row;
p->column = Matrix_column;
p->release = Matrix_release;
}
//-----------------------------Rotator-------------------------------//
double max(double a, double b)
{
return a > b ? a : b;
}
double Rotator_operator(Rotator_t *p, int i, int j){
assert(0 <= i && i < 2);
assert(0 <= j && j < 2);
return p->elements[i * 2 + j];
}
void Rotator_init(Rotator_t *p, double x1, double x2)
{
// normalizes by the maximum magnitude
// to avoid harmful underflow and overflow
double mx = max(fabs(x1), fabs(x2));
x1 /= mx;
x2 /= mx;
double norm = sqrt(x1 * x1 + x2 * x2);
double cs = x1 / norm;
double sn = x2 / norm;
p->elements[0] = cs;
p->elements[1] = -sn;
p->elements[2] = sn;
p->elements[3] = cs;
p->operator = Rotator_operator;
}
//-----------------------------Reflector-------------------------------//
void Reflector_transform(Reflector_t *p, double u0, size_t len){
int i;
for (i = 0; i < len; i++){
p->u.pBlock[i] = p->u.pBlock[i] /u0;
}
}
void Reflector_transform_left(Reflector_t *src1, Vector_t src2, Vector_t dst, double gUM, size_t len){
int i;
for (i = 0; i < len; i++){
dst.pBlock[i] = src2.pBlock[i] - src1->u.pBlock[i] * gUM;
}
}
void Reflector_transform_right(Reflector_t *src1, Vector_t src2, Vector_t dst, double gMU, size_t len){
int i;
for (i = 0; i < len; i++){
dst.pBlock[i] = src2.pBlock[i] - gMU * src1->u.pBlock[i];
}
}
void Reflector_init(Reflector_t *p, Vector_t v) {
//assert(v.size() > 0 && v.size() <= L);
//const size_t N = v.size();
//const size_t p->L = sizeof(v)/sizeof(double);
p->L = v.len;
p->u.pBlock = (double *)malloc(sizeof(double)*v.len);
memcpy(p->u.pBlock, v.pBlock, sizeof(double)*v.len);
// normalizes elements by the maximum amplitude
// to avoid harmful underflow and overflow
double mx = 0.0;
for (size_t i = 0; i < p->L; ++i) {
mx = max(fabs(p->u.pBlock[i]), mx);
}
if (mx > 0.0) {
// calculates the normalized norm
double tau = 0.0;
for (size_t i = 0; i < p->L; ++i) {
double x = p->u.pBlock[i] / mx;
p->u.pBlock[i] = x;
tau += x * x;
}
tau = sqrt(tau);
// tau's sign should be the same as the first element in `u`
if (p->u.pBlock[0] < 0.0) {
tau = -tau;
}
double u0 = p->u.pBlock[0] + tau;
p->u.pBlock[0] = u0;
Reflector_transform(p, u0, p->L);
p->gamma = u0 / tau;
} else {
// v is a zero vector
p->gamma = 0.0;
memset(p->u.pBlock, 0.0, p->L);
}
}
void Reflector_release(Reflector_t *p){
if (p->u.pBlock != NULL){
free(p->u.pBlock);
p->u.pBlock = NULL;
}
}
double inner_product(double *a,double *b,int n){
int i;
double sum = 0.0;
for(i = 0; i < n; i++)
{
sum += (*(a+i))*(*(b+i));
}
return sum;
}
Matrix_t Reflector_applyFromLeftTo(Reflector_t *p, Matrix_t m){
// H * m = m - gamma * u * u^T * m
Matrix_t m2 = Matrix_clone(&m);//m->clone(m);
Vector_t vec_m;
Vector_t vec_m2;
int offset = N - p->L;
for (int i = 0; i < N; ++i) {
// caches gamma * u^T * m
vec_m = Matrix_column(&m, i);
Vector_t srcColumn = vector_slice(vec_m, offset);
double v_src_column[srcColumn.len];
for(size_t i = 0; i < srcColumn.len; i++){
v_src_column[i] = Vector_column_operator(&srcColumn, i);
}
srcColumn.pBlock = v_src_column;
double gUM = inner_product(p->u.pBlock, srcColumn.pBlock, p->L);
//Vector< const double > srcColumn = m->column(m, i).slice(offset);
gUM *= p->gamma;
// H * m = m - u * gUM
vec_m2 = Matrix_column(&m2, i);
Vector_t dstColumn = vector_slice(vec_m2, offset);
double v_dstcolumn[dstColumn.len];
for(size_t i = 0; i < dstColumn.len; i++){
v_dstcolumn[i] = Vector_column_operator(&dstColumn, i);
}
dstColumn.pBlock = v_dstcolumn;
Reflector_transform_left(p, srcColumn, dstColumn, gUM, p->L);
Vector_sync(&m2, i, dstColumn, offset);
}
Matrix_release(&m);
return m2;
}
Matrix_t Reflector_applyFromRightTo(Reflector_t *p, Matrix_t m){
// m * H = m - m * gamma * u * u^T
Matrix_t m2 = Matrix_clone(&m);
Vector_t vec_m;
Vector_t vec_m2;
int offset = 64 - p->L;
for (int i = 0; i < M; ++i) {
// caches gamma * m * u
vec_m = Matrix_row(&m, i);
Vector_t srcRow = vector_slice(vec_m, offset);
double v_src_row[srcRow.len];
for(size_t j = 0; j< srcRow.len; j++){
v_src_row[j] = Vector_row_operator(&srcRow, j);
}
srcRow.pBlock = v_src_row;
double gMU = inner_product(p->u.pBlock, srcRow.pBlock, p->L);
gMU *= p->gamma;
// m * H = m - gMU * u^T
vec_m2 = Matrix_row(&m2, i);
Vector_t dstRow = vector_slice(vec_m2, offset);
double v_dstrow[dstRow.len];
for(size_t j = 0; j < dstRow.len; j++){
v_dstrow[j] = Vector_row_operator(&dstRow, j);
}
dstRow.pBlock = v_dstrow;
Reflector_transform_right(p ,srcRow, dstRow, gMU, p->L);
Vector_row_sync(&m2, i, dstRow, offset);
}
Matrix_release(&m);
return m2;
}
//-----------------------------Svd-------------------------------//
int cmp_double(const void* e1, const void* e2)
{
if ((*(double*)e2 - *(double*)e1) > 0.00000)
return 1;
else if ((*(double*)e2 - *(double*)e1) == 0.000000)
return 0;
else
return -1;
}
DiagonalMatrix_t Svd_decomposeUSV(BidiagonalMatrix_t *p, Matrix_t *m) {
const int MAX_ITERATIONS = N * 10;
// allocates matrices
Matrix_t m1 = Matrix_clone(m);
Matrix_def(&m1);
// bidiagonalizes a given matrix
BidiagonalMatrix_t m2 = p->bidiagonalize(p, m1);
// repeats Francis iteration
int iteration = 0;
int n = N;
while (n >= 2) {
// processes the n-1 x n-1 submatrix
// if the current n x n submatrix has converged
double bn = m2.operator(&m2, n - 1, n - 1);
if (bn == 0.0 || fabs(m2.operator(&m2, n - 2, n - 1) / bn) < 1.0e-15) {
--n;
} else {
// aborts if too many iterations
++iteration;
if (iteration > MAX_ITERATIONS) {
break;
}
m2.doFrancis(&m2, n);
}
}
// copies the diagonal elements
// and makes all singular values positive
double ss[N];
for (int i = 0; i < N; ++i) {
if (m2.operator(&m2, i, i) < 0) {
ss[i] = -m2.operator(&m2, i, i);
// inverts the sign of the right singular vector
//Vector< double > vi = v.column(i);
//std::transform(
// vi.begin(), vi.end(), vi.begin(),
// [](double x) {
// return -x;
// });
} else {
ss[i] = m2.operator(&m2, i, i);
}
}
// sorts singular values in descending order if necessary
int shuffle[M]; // M >= N
bool sortNeeded = false;
for (int i = 0; i < M; ++i) {
shuffle[i] = i;
sortNeeded = sortNeeded || (i < N - 1 && ss[i] < ss[i + 1]);
}
m1.release(&m1);
BidiagonalMatrix_release(p);
DiagonalMatrix_t dm;
if (sortNeeded) {
// shuffles the N (<= M) singular values
qsort(ss, N,sizeof(double), cmp_double);
double ss2[M];
memcpy(ss2, ss, M*sizeof(double));
DiagonalMatrix_init(&dm, ss2);
return dm;
} else {
DiagonalMatrix_init(&dm, ss);
return dm;
}
}
bool Svd_isFullRank(DiagonalMatrix_t *p, const int size) {
const double round_off = 1.000009e-12;
for (int i = 0; i < size; ++i) {
if (fabs( p->operator(p, i, i) ) < round_off){
p->release(p);
return false;
}
}
p->release(p);
return true;
}
//-----------------------------BidiagonalMatrix_t-------------------------------//
BidiagonalMatrix_t BidiagonalMatrix_bidiagonalize(BidiagonalMatrix_t *p, Matrix_t m)
{
assert(M >= N);
Vector_t vec_m;
Vector_t vec_m2;
for (int i = 0; i < N; ++i) {
Reflector_t rU;
vec_m = Matrix_column(&m, i);
Vector_t column_slice = vector_slice(vec_m, i);
// applies a householder transform to the column vector i
double v_column[column_slice.len];
for(size_t i = 0; i < column_slice.len; i++){
v_column[i] = Vector_column_operator(&column_slice, i);
}
column_slice.pBlock = v_column;
Reflector_init(&rU, column_slice);
m = Reflector_applyFromLeftTo(&rU, m);
Reflector_release(&rU);
//u = rU.applyFromRightTo(u); // U1^T*U0^T = U0*U1
if (i < N - 1) {
// applies a householder transform to the row vector i + 1
//Reflector< N > rV(m.row(i).slice(i + 1));
Reflector_t rV;
vec_m2 = Matrix_row(&m, i);
Vector_t row_slice = vector_slice(vec_m2, i+1);
double v_row[row_slice.len];
for(size_t i = 0; i < row_slice.len; i++){
v_row[i] = Vector_row_operator(&row_slice, i);
}
row_slice.pBlock = v_row;
Reflector_init(&rV, row_slice);
m = Reflector_applyFromRightTo(&rV, m);
//m = rV.applyFromRightTo(m);
//v = rV.applyFromRightTo(v);
Reflector_release(&rV);
}
}
BidiagonalMatrix_init(p, &m);
return *p;
}
void BidiagonalMatrix_release(BidiagonalMatrix_t *p)
{
if (p->pBlock != NULL){
free(p->pBlock);
p->pBlock = NULL;
}
}
double BidiagonalMatrix_operator(BidiagonalMatrix_t *p, int i, int j)
{
assert(i >= 0 && i < M);
assert(j >= 0 && j < N);
if (i == j) {
return p->pBlock[2 * i];
} else if (i + 1 == j) {
return p->pBlock[2 * i + 1];
} else {
return 0.0;
}
}
double BidiagonalMatrix_applyFirstRotatorFromRight(BidiagonalMatrix_t *p, Rotator_t *r)
{
double b1 = p->pBlock[0];
double g1 = p->pBlock[1];
double b2 = p->pBlock[2];
double r11 = Rotator_operator(r, 0, 0);//r->operator(r, 0, 0);
double r12 = Rotator_operator(r, 0, 1);//r->operator(r, 0, 1);
double r21 = Rotator_operator(r, 1, 0);//r->operator(r, 1, 0);
double r22 = Rotator_operator(r, 1, 1);//r->operator(r, 1, 1);
//Rotator_operator
p->pBlock[0] = b1 * r11 + g1 * r21;
p->pBlock[1] = b1 * r12 + g1 * r22;
p->pBlock[2] = b2 * r22;
return b2 * r21;
}
double BidiagonalMatrix_applyRotatorFromRight(BidiagonalMatrix_t *ptr, Rotator_t *r, int n, double bulge)
{
double* p = ptr->pBlock + n * 2;
double g0 = p[-1];
double b1 = p[0];
double g1 = p[1];
double b2 = p[2];
double r11 = r->operator(r, 0, 0);
double r12 = r->operator(r, 0, 1);
double r21 = r->operator(r, 1, 0);
double r22 = r->operator(r, 1, 1);
p[-1] = g0 * r11 + bulge * r21;
p[0] = b1 * r11 + g1 * r21;
p[1] = b1 * r12 + g1 * r22;
p[2] = b2 * r22;
return b2 * r21;
}
double BidiagonalMatrix_applyRotatorFromLeft(BidiagonalMatrix_t *ptr, Rotator_t *r, int n, double bulge)
{
double* p = ptr->pBlock + n * 2;
double b1 = p[0];
double g1 = p[1];
double b2 = p[2];
double r11 = r->operator(r, 0, 0);
double r12 = r->operator(r, 0, 1);
double r21 = r->operator(r, 1, 0);
double r22 = r->operator(r, 1, 1);
p[0] = r11 * b1 + r21 * bulge;
p[1] = r11 * g1 + r21 * b2;
p[2] = r12 * g1 + r22 * b2;
double newBulge;
if (n < N - 2) {
double g2 = p[3];
newBulge = r21 * g2;
p[3] = r22 * g2;
} else {
newBulge = 0.0;
}
return newBulge;
}
double BidiagonalMatrix_calculateShift(BidiagonalMatrix_t *m, int n)
{
assert(M >= N);
assert(n >= 2);
double b1 = m->operator(m, n - 2, n - 2);
double b2 = m->operator(m, n - 1, n - 1);
double g1 = m->operator(m, n - 2, n - 1);
// solves lambda^4 - d*lambda^2 + e = 0
// where
// d = b1^2 + b2^2 + g1^2
// e = b1^2 * b2^2
// chooses lambda (rho) closest to b2
double rho;
double d = b1 * b1 + b2 * b2 + g1 * g1;
double e = b1 * b1 * b2 * b2;
// lambda^2 = (d +- sqrt(d^2 - 4e)) / 2
// so, f = d^2 - 4e must be positive
double f = d * d - 4 * e;
if (f >= 0) {
f = sqrt(f);
// lambda = +-sqrt(d +- f) (d >= 0, f >= 0)
// if d > f, both d+f and d-f have real square roots
// otherwise considers only d+f
if (d > f) {
// lets l1 > l2
double l1 = sqrt((d + f) * 0.5);
double l2 = sqrt((d - f) * 0.5);
// if b2 >= 0, chooses a positive shift
// otherwise chooses a negative shift
if (b2 >= 0) {
if (fabs(b2 - l1) < fabs(b2 - l2)) {
rho = l1;
} else {
rho = l2;
}
} else {
if (fabs(b2 + l1) < fabs(b2 + l2)) {
rho = -l1;
} else {
rho = -l2;
}
}
} else {
double l1 = sqrt((d + f) * 0.5);
if (fabs(b2 - l1) <= fabs(b2 + l1)) {
rho = l1;
} else {
rho = -l1;
}
}
} else {
// no solution. chooses b2 as the shift
rho = b2;
}
return rho;
}
void BidiagonalMatrix_doFrancis(BidiagonalMatrix_t *m, int n)
{
assert(M >= N);
assert(n >= 2);
// calculates the shift
double rho = m->calculateShift(m, n);
// applies the first right rotator
double b1 = m->operator(m, 0, 0);
double g1 = m->operator(m, 0, 1);
double mx = max(fabs(rho), max(fabs(b1), fabs(g1)));
rho /= mx;
b1 /= mx;
g1 /= mx;
//Rotator_t r0(b1 * b1 - rho * rho, b1 * g1);
Rotator_t r0;
Rotator_init(&r0, b1 * b1 - rho * rho, b1 * g1);
double bulge = m->applyFirstRotatorFromRight(m, &r0);
//v = r0.applyFromRightTo(&r0, v, 0);
// applies the first left rotator
Rotator_t r1;
Rotator_init(&r1, m->operator(m, 0, 0), bulge);
//Rotator_t r1(m(0, 0), bulge);
bulge = m->applyRotatorFromLeft(m, &r1, 0, bulge);
//u = r1.applyFromRightTo(&r1, u, 0); // U1^T*U0^T = U0*U1
for (int i = 1; i + 1 < n; ++i) {
// calculates (i+1)-th right rotator
//Rotator rV(m(i - 1, i), bulge);
Rotator_t rV;
Rotator_init(&rV, m->operator(m, i - 1, i), bulge);
bulge = m->applyRotatorFromRight(m, &rV, i, bulge);
//v = rV.applyFromRightTo(&rV, v, i);
// calculates (i+1)-th left rotator
//Rotator rU(m(i, i), bulge);
Rotator_t rU;
Rotator_init(&rU, m->operator(m, i, i), bulge);
bulge = m->applyRotatorFromLeft(m, &rU, i, bulge);
//u = rU.applyFromRightTo(rU, u, i); // U1^T*U0^T = U0*U1
}
}
void BidiagonalMatrix_def(BidiagonalMatrix_t *p)
{
p->applyFirstRotatorFromRight = BidiagonalMatrix_applyFirstRotatorFromRight;
p->applyRotatorFromLeft = BidiagonalMatrix_applyRotatorFromLeft;
p->applyRotatorFromRight = BidiagonalMatrix_applyRotatorFromRight;
p->bidiagonalize = BidiagonalMatrix_bidiagonalize;
p->calculateShift = BidiagonalMatrix_calculateShift;
p->doFrancis = BidiagonalMatrix_doFrancis;
p->operator = BidiagonalMatrix_operator;
p->releases = BidiagonalMatrix_release;
}
void BidiagonalMatrix_init(BidiagonalMatrix_t *p, Matrix_t *m)
{
assert(M >= N);
int len;
len = 2 * N - 1;
p->pBlock = (double *)malloc(sizeof(double)*len);
memset(p->pBlock, 0.0,sizeof(double)*len);
for (int i = 0; i < N; ++i) {
p->pBlock[i * 2] = Matrix_operator(m, i, i);//m->operator(m, i, i);
if (i < N - 1) {
p->pBlock[i * 2 + 1] = Matrix_operator(m, i, i + 1);//m->operator(m, i, i + 1);
}
}
}
bool IsFullRank(const uint64_t matrix_[64*64])
{
double matrix__ [64*64];
// Matrix<64, 64> matrix;
for (int i = 0; i < 64; ++i) {
for (int j = 0; j < 64; ++j) {
matrix__[64*i + j] = (double) matrix_[64*i + j];
}
}
DiagonalMatrix_t dm;
Matrix_t mt;
BidiagonalMatrix_t bt;
DiagonalMatrix_init(&dm, matrix__);
//matrix.fill(matrix__);
Matrix_init(&mt);
Matrix_def(&mt);
mt.filledwith(&mt, matrix__);
BidiagonalMatrix_def(&bt);
DiagonalMatrix_t usv = Svd_decomposeUSV(&bt, &mt);
DiagonalMatrix_t singularValues = usv;
mt.release(&mt);
dm.release(&dm);
//DiagonalMatrix_release(&dm);
return Svd_isFullRank(&usv,64);
}
uint64_t GetUint64_t(uint8_t *data, int pos)
{
const uint8_t* ptr = data + pos * 8;
return ((uint64_t)ptr[0]) | \
((uint64_t)ptr[1]) << 8 | \
((uint64_t)ptr[2]) << 16 | \
((uint64_t)ptr[3]) << 24 | \
((uint64_t)ptr[4]) << 32 | \
((uint64_t)ptr[5]) << 40 | \
((uint64_t)ptr[6]) << 48 | \
((uint64_t)ptr[7]) << 56;
}
void XoShiRo256PlusPlus_init(Obtc_t *Obtc, uint64_t *s, uint256 seed) {
for (int i = 0; i < 4; ++i) {
//p->s[i] = seed.GetUint64(i);
s[i] = GetUint64_t(Obtc->data_r,i);
}
}
uint64_t RotateLeft64(const uint64_t x, int k) {
return (x << k) | (x >> (64 - k));
}
uint64_t XoShiRo256PlusPlus_operator(uint64_t *s){
const uint64_t result = RotateLeft64(s[0] + s[3], 23) + s[0];
const uint64_t t = s[1] << 17;
s[2] ^= s[0];
s[3] ^= s[1];
s[1] ^= s[2];
s[0] ^= s[3];
s[2] ^= t;
s[3] = RotateLeft64(s[3], 45);
return result;
}
void GenerateHeavyHashMatrix_t(Obtc_t *Obtc, uint256 matrix_seed, uint64_t matrix[64*64])
{
XoShiRo256PlusPlus_init(Obtc, Obtc->ss, matrix_seed);
do {
for (int i = 0; i < 64; ++i) {
for (int j = 0; j < 64; j += 16) {
uint64_t value = XoShiRo256PlusPlus_operator(Obtc->ss);//generator();
for (int shift = 0; shift < 16; ++shift) {
matrix[64*i + j + shift] = (value >> (4 * shift)) & 0xF;
}
}
}
//} while (!Is4BitPrecision(matrix) || !IsFullRank(matrix));
}while(!Is4BitPrecision(matrix));
}
void serialize_heavyhash(Obtc_t *Obtc, uint64_t matrix[64*64], const char* in, char* out, int len)
{
uint8_t temp[200]={
0x02,0xb9,0x7c,0x78,0x6f,0x82,0x43,0x83,0x5d,0x11,0x29,0xcf,0x82,0xaf,0xa5,0xbc,0xb1,0xfc,0xce,0x9c,
0xe7,0x8b,0x52,0x72,0x48,0xb0,0x94,0x27,0xa8,0x74,0x2e,0xdb,0x89,0xca,0x4e,0x84,0x9b,0xce,0xcf,0x4a,
0xd1,0x02,0x57,0x41,0x05,0x09,0x5f,0x8d,0xba,0x1d,0xe5,0xe4,0x45,0x16,0x68,0xe4,0xc1,0xa2,0x02,0x1d,
0x56,0x3b,0xb1,0x42,0x8f,0x06,0xdd,0x1c,0x7a,0x2f,0x85,0x1a,0x34,0x85,0x54,0x90,0x64,0xa3,0x6a,0x46,
0xb2,0x1a,0x60,0x1f,0x85,0xb4,0xb2,0x23,0xe6,0xc8,0x5d,0x8f,0x82,0xe9,0xda,0x89,0xec,0x70,0xf1,0xa4,
0x25,0xb1,0x37,0x15,0x44,0xe3,0x67,0x87,0x5b,0x29,0x91,0x52,0x0f,0x96,0x07,0x05,0x40,0xf1,0x4a,0x0e,
0x2e,0x65,0x1c,0x3c,0x43,0x28,0x5f,0xf0,0xf8,0xeb,0xf1,0x33,0x88,0x66,0x31,0x40,0x77,0x6b,0xf6,0x0c,
0x78,0x9b,0xc2,0x9c,0x18,0x3a,0x98,0x1e,0xad,0x41,0x5b,0x10,0x4a,0xef,0x61,0xd6,0x29,0xdc,0xe2,0x46,
0x7b,0x2f,0xaf,0xca,0x87,0x5e,0x2d,0x65,0x1b,0xa5,0xa4,0xa3,0xf5,0x98,0x69,0xa0,0x1e,0x5f,0x2e,0x72,
0x0e,0xfb,0x44,0xd2,0x29,0xbf,0x88,0x55,0xb7,0x02,0x7e,0x3c,0x11,0x3c,0xff,0x0d,0xa1,0xf6,0xd8,0x3d
};
for(int i = 0 ;i< 200 ;i++)Obtc->const_data[i] = temp[i];
CHeavyHash_init(Obtc, &Obtc->CHeavyHash_p, matrix);
CHeavyHash_Write(&Obtc->CHeavyHash_p, (const unsigned char*)in, len);
CHeavyHash_Finalize(Obtc, &Obtc->CHeavyHash_p, (unsigned char*)out);
}
void opticalbtc_hash(const char* in, char* out, int len)
{
uint8_t *ptr = (uint8_t*) in;
uint256 seed, hashprev;
uint64_t matrix[64*64];
Obtc_t Obtc;
CSHA3_256_init(&Obtc, &Obtc.CSHA3_256_p);
memcpy(Obtc.data_r,ptr, 32);
GenerateHeavyHashMatrix_t(&Obtc, seed, matrix);
serialize_heavyhash(&Obtc, matrix, in, out, len);
}