908 lines
21 KiB
C
908 lines
21 KiB
C
//! heavyhash extracted from optical bitcoin
|
|
//! 2022 barrystyle
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <search.h>//qsort
|
|
#include<time.h>
|
|
|
|
#include "obtc.h"
|
|
|
|
|
|
#define M 64
|
|
#define N 64
|
|
|
|
bool Is4BitPrecision(const uint64_t matrix[64*64])
|
|
{
|
|
for (int i = 0; i < 64; ++i) {
|
|
for (int j = 0; j < 64; ++j) {
|
|
if (matrix[ i*64 + j] > 0xF)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
double DiagonalMatrix_operator(DiagonalMatrix_t *p, int i, int j)
|
|
{
|
|
assert(i >= 0 && i < 64);
|
|
assert(j >= 0 && j < 64);
|
|
if (i == j) {
|
|
return p->pBlock[i];
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
void DiagonalMatrix_release(DiagonalMatrix_t *p)
|
|
{
|
|
if (p->pBlock != NULL){
|
|
free(p->pBlock);
|
|
p->pBlock = NULL;
|
|
}
|
|
}
|
|
|
|
void DiagonalMatrix_init(DiagonalMatrix_t *p, const double values[])
|
|
{
|
|
p->pBlock = (double *)malloc(sizeof(double)*M);
|
|
//memset(pBlock, 0.0, sizeof(double)*L(64,64));
|
|
memcpy(p->pBlock, values, sizeof(double) * M);
|
|
|
|
p->operator = DiagonalMatrix_operator;
|
|
p->release = DiagonalMatrix_release;
|
|
|
|
}
|
|
|
|
void DiagonalMatrix_DiagonalMatrix(DiagonalMatrix_t *p)
|
|
{
|
|
p->operator = DiagonalMatrix_operator;
|
|
p->release = DiagonalMatrix_release;
|
|
}
|
|
|
|
//-----------------------------vector-------------------------------//
|
|
|
|
void vector_move(Vector_t *p, ptrdiff_t delta) {
|
|
p->ptr += delta;
|
|
}
|
|
|
|
Vector_t vector_slice(Vector_t v, size_t start) {
|
|
//assert(start >= 0 && start <= p->len);
|
|
Vector_t v_tmp;
|
|
v_tmp.pBlock = v.pBlock + start * v.delta;
|
|
v_tmp.len = v.len - start;
|
|
v_tmp.delta = v.delta;
|
|
return v_tmp;
|
|
}
|
|
|
|
double Vector_column_operator(Vector_t *p, size_t idx){
|
|
return p->pBlock[idx * p->delta];
|
|
}
|
|
|
|
double Vector_row_operator(Vector_t *p, size_t idx){
|
|
return p->pBlock[idx * p->delta];
|
|
}
|
|
|
|
void Vector_sync(Matrix_t *p, size_t idx, Vector_t vec, int offset){
|
|
for(int i = 0; i < vec.len; i++){
|
|
p->pBlock[idx+(offset+i)*N] = vec.pBlock[i];
|
|
}
|
|
}
|
|
|
|
void Vector_row_sync(Matrix_t *p, size_t idx, Vector_t vec, int offset){
|
|
for(int i = 0; i < vec.len; i++){
|
|
p->pBlock[offset+idx*N+i] = vec.pBlock[i];
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------Martrix-------------------------------//
|
|
Matrix_t Matrix_clone(Matrix_t *p)
|
|
{
|
|
Matrix_t m;
|
|
|
|
m.pBlock = (double *)malloc(sizeof(double)*L(64,64));
|
|
memcpy(m.pBlock, p->pBlock, sizeof(double)*L(64,64));
|
|
|
|
return m;
|
|
}
|
|
|
|
void Matrix_filledwith(Matrix_t *p, const double values[])
|
|
{
|
|
//p->pBlock = (double *)malloc(sizeof(double)*L(64,64));
|
|
//memset(pBlock, 0.0, sizeof(double)*L(64,64));
|
|
memcpy(p->pBlock, values, sizeof(double) * L(64,64));
|
|
}
|
|
|
|
double Matrix_operator(Matrix_t *p, int i, int j)
|
|
{
|
|
assert(i >= 0 && i < N);
|
|
assert(j >= 0 && j < N);
|
|
|
|
return p->pBlock[i*N+j];
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector_t Matrix_row(Matrix_t *p, int i)
|
|
{
|
|
Vector_t vec_tmp;
|
|
vec_tmp.len = N;
|
|
vec_tmp.delta = 1;
|
|
vec_tmp.pBlock = p->pBlock + i*N;
|
|
//return Vector< const double >(this->pBlock + i * N, N, 1);
|
|
return vec_tmp;
|
|
|
|
}
|
|
|
|
Vector_t Matrix_column(Matrix_t *p, int j)
|
|
{
|
|
Vector_t vec_tmp;
|
|
vec_tmp.len = M;
|
|
vec_tmp.delta = N;
|
|
vec_tmp.pBlock = p->pBlock + j;
|
|
|
|
return vec_tmp;
|
|
//return Vector< double >(this->pBlock + j, M, N);
|
|
|
|
}
|
|
|
|
void Matrix_release(Matrix_t *p)
|
|
{
|
|
if (p->pBlock != NULL){
|
|
free(p->pBlock);
|
|
p->pBlock = NULL;
|
|
}
|
|
}
|
|
|
|
void Matrix_init(Matrix_t *p)
|
|
{
|
|
p->pBlock = (double *)malloc(sizeof(double)*L(64,64));
|
|
memset(p->pBlock, 0.0, sizeof(double)*L(64,64));
|
|
//memcpy(p->pBlock, values, sizeof(double) * L(64,64));
|
|
}
|
|
|
|
void Matrix_def(Matrix_t *p)
|
|
{
|
|
//p->clone = Matrix_clone;
|
|
p->filledwith = Matrix_filledwith;
|
|
p->operator = Matrix_operator;
|
|
p->row = Matrix_row;
|
|
p->column = Matrix_column;
|
|
p->release = Matrix_release;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//-----------------------------Rotator-------------------------------//
|
|
|
|
double max(double a, double b)
|
|
{
|
|
return a > b ? a : b;
|
|
}
|
|
|
|
double Rotator_operator(Rotator_t *p, int i, int j){
|
|
assert(0 <= i && i < 2);
|
|
assert(0 <= j && j < 2);
|
|
return p->elements[i * 2 + j];
|
|
}
|
|
|
|
void Rotator_init(Rotator_t *p, double x1, double x2)
|
|
{
|
|
// normalizes by the maximum magnitude
|
|
// to avoid harmful underflow and overflow
|
|
double mx = max(fabs(x1), fabs(x2));
|
|
|
|
x1 /= mx;
|
|
x2 /= mx;
|
|
double norm = sqrt(x1 * x1 + x2 * x2);
|
|
double cs = x1 / norm;
|
|
double sn = x2 / norm;
|
|
p->elements[0] = cs;
|
|
p->elements[1] = -sn;
|
|
p->elements[2] = sn;
|
|
p->elements[3] = cs;
|
|
|
|
p->operator = Rotator_operator;
|
|
}
|
|
|
|
//-----------------------------Reflector-------------------------------//
|
|
|
|
|
|
void Reflector_transform(Reflector_t *p, double u0, size_t len){
|
|
int i;
|
|
for (i = 0; i < len; i++){
|
|
p->u.pBlock[i] = p->u.pBlock[i] /u0;
|
|
}
|
|
}
|
|
|
|
void Reflector_transform_left(Reflector_t *src1, Vector_t src2, Vector_t dst, double gUM, size_t len){
|
|
int i;
|
|
for (i = 0; i < len; i++){
|
|
dst.pBlock[i] = src2.pBlock[i] - src1->u.pBlock[i] * gUM;
|
|
}
|
|
}
|
|
|
|
void Reflector_transform_right(Reflector_t *src1, Vector_t src2, Vector_t dst, double gMU, size_t len){
|
|
int i;
|
|
for (i = 0; i < len; i++){
|
|
dst.pBlock[i] = src2.pBlock[i] - gMU * src1->u.pBlock[i];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void Reflector_init(Reflector_t *p, Vector_t v) {
|
|
//assert(v.size() > 0 && v.size() <= L);
|
|
//const size_t N = v.size();
|
|
//const size_t p->L = sizeof(v)/sizeof(double);
|
|
p->L = v.len;
|
|
|
|
p->u.pBlock = (double *)malloc(sizeof(double)*v.len);
|
|
memcpy(p->u.pBlock, v.pBlock, sizeof(double)*v.len);
|
|
|
|
// normalizes elements by the maximum amplitude
|
|
// to avoid harmful underflow and overflow
|
|
|
|
double mx = 0.0;
|
|
|
|
for (size_t i = 0; i < p->L; ++i) {
|
|
mx = max(fabs(p->u.pBlock[i]), mx);
|
|
}
|
|
|
|
if (mx > 0.0) {
|
|
// calculates the normalized norm
|
|
double tau = 0.0;
|
|
for (size_t i = 0; i < p->L; ++i) {
|
|
double x = p->u.pBlock[i] / mx;
|
|
p->u.pBlock[i] = x;
|
|
tau += x * x;
|
|
}
|
|
tau = sqrt(tau);
|
|
// tau's sign should be the same as the first element in `u`
|
|
if (p->u.pBlock[0] < 0.0) {
|
|
tau = -tau;
|
|
}
|
|
double u0 = p->u.pBlock[0] + tau;
|
|
p->u.pBlock[0] = u0;
|
|
Reflector_transform(p, u0, p->L);
|
|
|
|
p->gamma = u0 / tau;
|
|
} else {
|
|
// v is a zero vector
|
|
p->gamma = 0.0;
|
|
memset(p->u.pBlock, 0.0, p->L);
|
|
}
|
|
}
|
|
|
|
void Reflector_release(Reflector_t *p){
|
|
if (p->u.pBlock != NULL){
|
|
free(p->u.pBlock);
|
|
p->u.pBlock = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
double inner_product(double *a,double *b,int n){
|
|
int i;
|
|
double sum = 0.0;
|
|
|
|
for(i = 0; i < n; i++)
|
|
{
|
|
sum += (*(a+i))*(*(b+i));
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
Matrix_t Reflector_applyFromLeftTo(Reflector_t *p, Matrix_t m){
|
|
// H * m = m - gamma * u * u^T * m
|
|
Matrix_t m2 = Matrix_clone(&m);//m->clone(m);
|
|
Vector_t vec_m;
|
|
Vector_t vec_m2;
|
|
|
|
int offset = N - p->L;
|
|
for (int i = 0; i < N; ++i) {
|
|
// caches gamma * u^T * m
|
|
vec_m = Matrix_column(&m, i);
|
|
|
|
Vector_t srcColumn = vector_slice(vec_m, offset);
|
|
double v_src_column[srcColumn.len];
|
|
|
|
for(size_t i = 0; i < srcColumn.len; i++){
|
|
v_src_column[i] = Vector_column_operator(&srcColumn, i);
|
|
}
|
|
srcColumn.pBlock = v_src_column;
|
|
|
|
double gUM = inner_product(p->u.pBlock, srcColumn.pBlock, p->L);
|
|
//Vector< const double > srcColumn = m->column(m, i).slice(offset);
|
|
|
|
gUM *= p->gamma;
|
|
// H * m = m - u * gUM
|
|
vec_m2 = Matrix_column(&m2, i);
|
|
Vector_t dstColumn = vector_slice(vec_m2, offset);
|
|
double v_dstcolumn[dstColumn.len];
|
|
|
|
for(size_t i = 0; i < dstColumn.len; i++){
|
|
v_dstcolumn[i] = Vector_column_operator(&dstColumn, i);
|
|
}
|
|
dstColumn.pBlock = v_dstcolumn;
|
|
|
|
Reflector_transform_left(p, srcColumn, dstColumn, gUM, p->L);
|
|
Vector_sync(&m2, i, dstColumn, offset);
|
|
}
|
|
Matrix_release(&m);
|
|
return m2;
|
|
}
|
|
|
|
Matrix_t Reflector_applyFromRightTo(Reflector_t *p, Matrix_t m){
|
|
// m * H = m - m * gamma * u * u^T
|
|
Matrix_t m2 = Matrix_clone(&m);
|
|
Vector_t vec_m;
|
|
Vector_t vec_m2;
|
|
|
|
int offset = 64 - p->L;
|
|
|
|
for (int i = 0; i < M; ++i) {
|
|
// caches gamma * m * u
|
|
vec_m = Matrix_row(&m, i);
|
|
Vector_t srcRow = vector_slice(vec_m, offset);
|
|
|
|
double v_src_row[srcRow.len];
|
|
for(size_t j = 0; j< srcRow.len; j++){
|
|
v_src_row[j] = Vector_row_operator(&srcRow, j);
|
|
}
|
|
srcRow.pBlock = v_src_row;
|
|
|
|
double gMU = inner_product(p->u.pBlock, srcRow.pBlock, p->L);
|
|
|
|
gMU *= p->gamma;
|
|
// m * H = m - gMU * u^T
|
|
vec_m2 = Matrix_row(&m2, i);
|
|
|
|
Vector_t dstRow = vector_slice(vec_m2, offset);
|
|
|
|
double v_dstrow[dstRow.len];
|
|
|
|
for(size_t j = 0; j < dstRow.len; j++){
|
|
v_dstrow[j] = Vector_row_operator(&dstRow, j);
|
|
}
|
|
dstRow.pBlock = v_dstrow;
|
|
|
|
Reflector_transform_right(p ,srcRow, dstRow, gMU, p->L);
|
|
Vector_row_sync(&m2, i, dstRow, offset);
|
|
}
|
|
Matrix_release(&m);
|
|
return m2;
|
|
}
|
|
|
|
|
|
//-----------------------------Svd-------------------------------//
|
|
|
|
int cmp_double(const void* e1, const void* e2)
|
|
{
|
|
if ((*(double*)e2 - *(double*)e1) > 0.00000)
|
|
return 1;
|
|
else if ((*(double*)e2 - *(double*)e1) == 0.000000)
|
|
return 0;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
DiagonalMatrix_t Svd_decomposeUSV(BidiagonalMatrix_t *p, Matrix_t *m) {
|
|
const int MAX_ITERATIONS = N * 10;
|
|
// allocates matrices
|
|
Matrix_t m1 = Matrix_clone(m);
|
|
Matrix_def(&m1);
|
|
|
|
|
|
|
|
// bidiagonalizes a given matrix
|
|
BidiagonalMatrix_t m2 = p->bidiagonalize(p, m1);
|
|
// repeats Francis iteration
|
|
|
|
|
|
int iteration = 0;
|
|
int n = N;
|
|
|
|
while (n >= 2) {
|
|
// processes the n-1 x n-1 submatrix
|
|
// if the current n x n submatrix has converged
|
|
double bn = m2.operator(&m2, n - 1, n - 1);
|
|
|
|
if (bn == 0.0 || fabs(m2.operator(&m2, n - 2, n - 1) / bn) < 1.0e-15) {
|
|
--n;
|
|
} else {
|
|
// aborts if too many iterations
|
|
++iteration;
|
|
if (iteration > MAX_ITERATIONS) {
|
|
break;
|
|
}
|
|
m2.doFrancis(&m2, n);
|
|
}
|
|
}
|
|
|
|
// copies the diagonal elements
|
|
// and makes all singular values positive
|
|
double ss[N];
|
|
for (int i = 0; i < N; ++i) {
|
|
if (m2.operator(&m2, i, i) < 0) {
|
|
ss[i] = -m2.operator(&m2, i, i);
|
|
// inverts the sign of the right singular vector
|
|
//Vector< double > vi = v.column(i);
|
|
//std::transform(
|
|
// vi.begin(), vi.end(), vi.begin(),
|
|
// [](double x) {
|
|
// return -x;
|
|
// });
|
|
} else {
|
|
ss[i] = m2.operator(&m2, i, i);
|
|
}
|
|
}
|
|
|
|
// sorts singular values in descending order if necessary
|
|
int shuffle[M]; // M >= N
|
|
bool sortNeeded = false;
|
|
for (int i = 0; i < M; ++i) {
|
|
shuffle[i] = i;
|
|
sortNeeded = sortNeeded || (i < N - 1 && ss[i] < ss[i + 1]);
|
|
}
|
|
|
|
m1.release(&m1);
|
|
BidiagonalMatrix_release(p);
|
|
|
|
|
|
DiagonalMatrix_t dm;
|
|
if (sortNeeded) {
|
|
// shuffles the N (<= M) singular values
|
|
qsort(ss, N,sizeof(double), cmp_double);
|
|
|
|
double ss2[M];
|
|
|
|
memcpy(ss2, ss, M*sizeof(double));
|
|
DiagonalMatrix_init(&dm, ss2);
|
|
|
|
return dm;
|
|
} else {
|
|
DiagonalMatrix_init(&dm, ss);
|
|
return dm;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
bool Svd_isFullRank(DiagonalMatrix_t *p, const int size) {
|
|
const double round_off = 1.000009e-12;
|
|
for (int i = 0; i < size; ++i) {
|
|
if (fabs( p->operator(p, i, i) ) < round_off){
|
|
p->release(p);
|
|
return false;
|
|
}
|
|
}
|
|
p->release(p);
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------BidiagonalMatrix_t-------------------------------//
|
|
BidiagonalMatrix_t BidiagonalMatrix_bidiagonalize(BidiagonalMatrix_t *p, Matrix_t m)
|
|
{
|
|
assert(M >= N);
|
|
|
|
Vector_t vec_m;
|
|
Vector_t vec_m2;
|
|
|
|
for (int i = 0; i < N; ++i) {
|
|
Reflector_t rU;
|
|
|
|
vec_m = Matrix_column(&m, i);
|
|
Vector_t column_slice = vector_slice(vec_m, i);
|
|
// applies a householder transform to the column vector i
|
|
|
|
double v_column[column_slice.len];
|
|
|
|
for(size_t i = 0; i < column_slice.len; i++){
|
|
v_column[i] = Vector_column_operator(&column_slice, i);
|
|
}
|
|
column_slice.pBlock = v_column;
|
|
|
|
Reflector_init(&rU, column_slice);
|
|
|
|
m = Reflector_applyFromLeftTo(&rU, m);
|
|
|
|
Reflector_release(&rU);
|
|
//u = rU.applyFromRightTo(u); // U1^T*U0^T = U0*U1
|
|
if (i < N - 1) {
|
|
// applies a householder transform to the row vector i + 1
|
|
//Reflector< N > rV(m.row(i).slice(i + 1));
|
|
Reflector_t rV;
|
|
vec_m2 = Matrix_row(&m, i);
|
|
Vector_t row_slice = vector_slice(vec_m2, i+1);
|
|
|
|
double v_row[row_slice.len];
|
|
|
|
for(size_t i = 0; i < row_slice.len; i++){
|
|
v_row[i] = Vector_row_operator(&row_slice, i);
|
|
}
|
|
row_slice.pBlock = v_row;
|
|
Reflector_init(&rV, row_slice);
|
|
|
|
m = Reflector_applyFromRightTo(&rV, m);
|
|
//m = rV.applyFromRightTo(m);
|
|
//v = rV.applyFromRightTo(v);
|
|
|
|
Reflector_release(&rV);
|
|
|
|
}
|
|
}
|
|
|
|
BidiagonalMatrix_init(p, &m);
|
|
return *p;
|
|
}
|
|
|
|
void BidiagonalMatrix_release(BidiagonalMatrix_t *p)
|
|
{
|
|
if (p->pBlock != NULL){
|
|
free(p->pBlock);
|
|
p->pBlock = NULL;
|
|
}
|
|
}
|
|
|
|
double BidiagonalMatrix_operator(BidiagonalMatrix_t *p, int i, int j)
|
|
{
|
|
assert(i >= 0 && i < M);
|
|
assert(j >= 0 && j < N);
|
|
if (i == j) {
|
|
return p->pBlock[2 * i];
|
|
} else if (i + 1 == j) {
|
|
return p->pBlock[2 * i + 1];
|
|
} else {
|
|
return 0.0;
|
|
}
|
|
|
|
}
|
|
|
|
double BidiagonalMatrix_applyFirstRotatorFromRight(BidiagonalMatrix_t *p, Rotator_t *r)
|
|
{
|
|
double b1 = p->pBlock[0];
|
|
double g1 = p->pBlock[1];
|
|
double b2 = p->pBlock[2];
|
|
double r11 = Rotator_operator(r, 0, 0);//r->operator(r, 0, 0);
|
|
double r12 = Rotator_operator(r, 0, 1);//r->operator(r, 0, 1);
|
|
double r21 = Rotator_operator(r, 1, 0);//r->operator(r, 1, 0);
|
|
double r22 = Rotator_operator(r, 1, 1);//r->operator(r, 1, 1);
|
|
//Rotator_operator
|
|
|
|
p->pBlock[0] = b1 * r11 + g1 * r21;
|
|
p->pBlock[1] = b1 * r12 + g1 * r22;
|
|
p->pBlock[2] = b2 * r22;
|
|
return b2 * r21;
|
|
}
|
|
|
|
double BidiagonalMatrix_applyRotatorFromRight(BidiagonalMatrix_t *ptr, Rotator_t *r, int n, double bulge)
|
|
{
|
|
double* p = ptr->pBlock + n * 2;
|
|
double g0 = p[-1];
|
|
double b1 = p[0];
|
|
double g1 = p[1];
|
|
double b2 = p[2];
|
|
double r11 = r->operator(r, 0, 0);
|
|
double r12 = r->operator(r, 0, 1);
|
|
double r21 = r->operator(r, 1, 0);
|
|
double r22 = r->operator(r, 1, 1);
|
|
p[-1] = g0 * r11 + bulge * r21;
|
|
p[0] = b1 * r11 + g1 * r21;
|
|
p[1] = b1 * r12 + g1 * r22;
|
|
p[2] = b2 * r22;
|
|
return b2 * r21;
|
|
}
|
|
|
|
double BidiagonalMatrix_applyRotatorFromLeft(BidiagonalMatrix_t *ptr, Rotator_t *r, int n, double bulge)
|
|
{
|
|
double* p = ptr->pBlock + n * 2;
|
|
double b1 = p[0];
|
|
double g1 = p[1];
|
|
double b2 = p[2];
|
|
double r11 = r->operator(r, 0, 0);
|
|
double r12 = r->operator(r, 0, 1);
|
|
double r21 = r->operator(r, 1, 0);
|
|
double r22 = r->operator(r, 1, 1);
|
|
|
|
p[0] = r11 * b1 + r21 * bulge;
|
|
p[1] = r11 * g1 + r21 * b2;
|
|
p[2] = r12 * g1 + r22 * b2;
|
|
double newBulge;
|
|
if (n < N - 2) {
|
|
double g2 = p[3];
|
|
newBulge = r21 * g2;
|
|
p[3] = r22 * g2;
|
|
} else {
|
|
newBulge = 0.0;
|
|
}
|
|
return newBulge;
|
|
}
|
|
|
|
double BidiagonalMatrix_calculateShift(BidiagonalMatrix_t *m, int n)
|
|
{
|
|
assert(M >= N);
|
|
assert(n >= 2);
|
|
double b1 = m->operator(m, n - 2, n - 2);
|
|
double b2 = m->operator(m, n - 1, n - 1);
|
|
double g1 = m->operator(m, n - 2, n - 1);
|
|
|
|
// solves lambda^4 - d*lambda^2 + e = 0
|
|
// where
|
|
// d = b1^2 + b2^2 + g1^2
|
|
// e = b1^2 * b2^2
|
|
// chooses lambda (rho) closest to b2
|
|
double rho;
|
|
double d = b1 * b1 + b2 * b2 + g1 * g1;
|
|
double e = b1 * b1 * b2 * b2;
|
|
// lambda^2 = (d +- sqrt(d^2 - 4e)) / 2
|
|
// so, f = d^2 - 4e must be positive
|
|
double f = d * d - 4 * e;
|
|
|
|
if (f >= 0) {
|
|
f = sqrt(f);
|
|
// lambda = +-sqrt(d +- f) (d >= 0, f >= 0)
|
|
// if d > f, both d+f and d-f have real square roots
|
|
// otherwise considers only d+f
|
|
if (d > f) {
|
|
// lets l1 > l2
|
|
double l1 = sqrt((d + f) * 0.5);
|
|
double l2 = sqrt((d - f) * 0.5);
|
|
// if b2 >= 0, chooses a positive shift
|
|
// otherwise chooses a negative shift
|
|
if (b2 >= 0) {
|
|
if (fabs(b2 - l1) < fabs(b2 - l2)) {
|
|
rho = l1;
|
|
} else {
|
|
rho = l2;
|
|
}
|
|
} else {
|
|
if (fabs(b2 + l1) < fabs(b2 + l2)) {
|
|
rho = -l1;
|
|
} else {
|
|
rho = -l2;
|
|
}
|
|
}
|
|
} else {
|
|
double l1 = sqrt((d + f) * 0.5);
|
|
if (fabs(b2 - l1) <= fabs(b2 + l1)) {
|
|
rho = l1;
|
|
} else {
|
|
rho = -l1;
|
|
}
|
|
}
|
|
} else {
|
|
// no solution. chooses b2 as the shift
|
|
rho = b2;
|
|
}
|
|
|
|
return rho;
|
|
}
|
|
|
|
|
|
|
|
void BidiagonalMatrix_doFrancis(BidiagonalMatrix_t *m, int n)
|
|
{
|
|
assert(M >= N);
|
|
assert(n >= 2);
|
|
// calculates the shift
|
|
double rho = m->calculateShift(m, n);
|
|
|
|
// applies the first right rotator
|
|
double b1 = m->operator(m, 0, 0);
|
|
double g1 = m->operator(m, 0, 1);
|
|
double mx = max(fabs(rho), max(fabs(b1), fabs(g1)));
|
|
rho /= mx;
|
|
b1 /= mx;
|
|
g1 /= mx;
|
|
//Rotator_t r0(b1 * b1 - rho * rho, b1 * g1);
|
|
|
|
Rotator_t r0;
|
|
Rotator_init(&r0, b1 * b1 - rho * rho, b1 * g1);
|
|
|
|
double bulge = m->applyFirstRotatorFromRight(m, &r0);
|
|
//v = r0.applyFromRightTo(&r0, v, 0);
|
|
// applies the first left rotator
|
|
|
|
Rotator_t r1;
|
|
Rotator_init(&r1, m->operator(m, 0, 0), bulge);
|
|
//Rotator_t r1(m(0, 0), bulge);
|
|
bulge = m->applyRotatorFromLeft(m, &r1, 0, bulge);
|
|
//u = r1.applyFromRightTo(&r1, u, 0); // U1^T*U0^T = U0*U1
|
|
|
|
for (int i = 1; i + 1 < n; ++i) {
|
|
// calculates (i+1)-th right rotator
|
|
//Rotator rV(m(i - 1, i), bulge);
|
|
Rotator_t rV;
|
|
Rotator_init(&rV, m->operator(m, i - 1, i), bulge);
|
|
|
|
bulge = m->applyRotatorFromRight(m, &rV, i, bulge);
|
|
//v = rV.applyFromRightTo(&rV, v, i);
|
|
// calculates (i+1)-th left rotator
|
|
//Rotator rU(m(i, i), bulge);
|
|
Rotator_t rU;
|
|
Rotator_init(&rU, m->operator(m, i, i), bulge);
|
|
|
|
bulge = m->applyRotatorFromLeft(m, &rU, i, bulge);
|
|
//u = rU.applyFromRightTo(rU, u, i); // U1^T*U0^T = U0*U1
|
|
}
|
|
}
|
|
|
|
void BidiagonalMatrix_def(BidiagonalMatrix_t *p)
|
|
{
|
|
p->applyFirstRotatorFromRight = BidiagonalMatrix_applyFirstRotatorFromRight;
|
|
p->applyRotatorFromLeft = BidiagonalMatrix_applyRotatorFromLeft;
|
|
p->applyRotatorFromRight = BidiagonalMatrix_applyRotatorFromRight;
|
|
p->bidiagonalize = BidiagonalMatrix_bidiagonalize;
|
|
p->calculateShift = BidiagonalMatrix_calculateShift;
|
|
p->doFrancis = BidiagonalMatrix_doFrancis;
|
|
p->operator = BidiagonalMatrix_operator;
|
|
p->releases = BidiagonalMatrix_release;
|
|
|
|
}
|
|
|
|
void BidiagonalMatrix_init(BidiagonalMatrix_t *p, Matrix_t *m)
|
|
{
|
|
assert(M >= N);
|
|
int len;
|
|
len = 2 * N - 1;
|
|
|
|
p->pBlock = (double *)malloc(sizeof(double)*len);
|
|
memset(p->pBlock, 0.0,sizeof(double)*len);
|
|
|
|
for (int i = 0; i < N; ++i) {
|
|
p->pBlock[i * 2] = Matrix_operator(m, i, i);//m->operator(m, i, i);
|
|
if (i < N - 1) {
|
|
p->pBlock[i * 2 + 1] = Matrix_operator(m, i, i + 1);//m->operator(m, i, i + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool IsFullRank(const uint64_t matrix_[64*64])
|
|
{
|
|
double matrix__ [64*64];
|
|
// Matrix<64, 64> matrix;
|
|
|
|
|
|
for (int i = 0; i < 64; ++i) {
|
|
for (int j = 0; j < 64; ++j) {
|
|
matrix__[64*i + j] = (double) matrix_[64*i + j];
|
|
}
|
|
}
|
|
|
|
DiagonalMatrix_t dm;
|
|
Matrix_t mt;
|
|
BidiagonalMatrix_t bt;
|
|
|
|
DiagonalMatrix_init(&dm, matrix__);
|
|
//matrix.fill(matrix__);
|
|
|
|
Matrix_init(&mt);
|
|
Matrix_def(&mt);
|
|
mt.filledwith(&mt, matrix__);
|
|
|
|
BidiagonalMatrix_def(&bt);
|
|
DiagonalMatrix_t usv = Svd_decomposeUSV(&bt, &mt);
|
|
DiagonalMatrix_t singularValues = usv;
|
|
mt.release(&mt);
|
|
dm.release(&dm);
|
|
//DiagonalMatrix_release(&dm);
|
|
return Svd_isFullRank(&usv,64);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
uint64_t GetUint64_t(uint8_t *data, int pos)
|
|
{
|
|
const uint8_t* ptr = data + pos * 8;
|
|
return ((uint64_t)ptr[0]) | \
|
|
((uint64_t)ptr[1]) << 8 | \
|
|
((uint64_t)ptr[2]) << 16 | \
|
|
((uint64_t)ptr[3]) << 24 | \
|
|
((uint64_t)ptr[4]) << 32 | \
|
|
((uint64_t)ptr[5]) << 40 | \
|
|
((uint64_t)ptr[6]) << 48 | \
|
|
((uint64_t)ptr[7]) << 56;
|
|
}
|
|
|
|
void XoShiRo256PlusPlus_init(Obtc_t *Obtc, uint64_t *s, uint256 seed) {
|
|
for (int i = 0; i < 4; ++i) {
|
|
//p->s[i] = seed.GetUint64(i);
|
|
s[i] = GetUint64_t(Obtc->data_r,i);
|
|
}
|
|
}
|
|
|
|
uint64_t RotateLeft64(const uint64_t x, int k) {
|
|
return (x << k) | (x >> (64 - k));
|
|
}
|
|
|
|
|
|
uint64_t XoShiRo256PlusPlus_operator(uint64_t *s){
|
|
const uint64_t result = RotateLeft64(s[0] + s[3], 23) + s[0];
|
|
|
|
const uint64_t t = s[1] << 17;
|
|
|
|
s[2] ^= s[0];
|
|
s[3] ^= s[1];
|
|
s[1] ^= s[2];
|
|
s[0] ^= s[3];
|
|
|
|
s[2] ^= t;
|
|
|
|
s[3] = RotateLeft64(s[3], 45);
|
|
|
|
return result;
|
|
}
|
|
|
|
void GenerateHeavyHashMatrix_t(Obtc_t *Obtc, uint256 matrix_seed, uint64_t matrix[64*64])
|
|
{
|
|
XoShiRo256PlusPlus_init(Obtc, Obtc->ss, matrix_seed);
|
|
|
|
do {
|
|
for (int i = 0; i < 64; ++i) {
|
|
for (int j = 0; j < 64; j += 16) {
|
|
uint64_t value = XoShiRo256PlusPlus_operator(Obtc->ss);//generator();
|
|
for (int shift = 0; shift < 16; ++shift) {
|
|
matrix[64*i + j + shift] = (value >> (4 * shift)) & 0xF;
|
|
}
|
|
}
|
|
}
|
|
//} while (!Is4BitPrecision(matrix) || !IsFullRank(matrix));
|
|
}while(!Is4BitPrecision(matrix));
|
|
}
|
|
|
|
|
|
|
|
|
|
void serialize_heavyhash(Obtc_t *Obtc, uint64_t matrix[64*64], const char* in, char* out, int len)
|
|
{
|
|
uint8_t temp[200]={
|
|
0x02,0xb9,0x7c,0x78,0x6f,0x82,0x43,0x83,0x5d,0x11,0x29,0xcf,0x82,0xaf,0xa5,0xbc,0xb1,0xfc,0xce,0x9c,
|
|
0xe7,0x8b,0x52,0x72,0x48,0xb0,0x94,0x27,0xa8,0x74,0x2e,0xdb,0x89,0xca,0x4e,0x84,0x9b,0xce,0xcf,0x4a,
|
|
0xd1,0x02,0x57,0x41,0x05,0x09,0x5f,0x8d,0xba,0x1d,0xe5,0xe4,0x45,0x16,0x68,0xe4,0xc1,0xa2,0x02,0x1d,
|
|
0x56,0x3b,0xb1,0x42,0x8f,0x06,0xdd,0x1c,0x7a,0x2f,0x85,0x1a,0x34,0x85,0x54,0x90,0x64,0xa3,0x6a,0x46,
|
|
0xb2,0x1a,0x60,0x1f,0x85,0xb4,0xb2,0x23,0xe6,0xc8,0x5d,0x8f,0x82,0xe9,0xda,0x89,0xec,0x70,0xf1,0xa4,
|
|
0x25,0xb1,0x37,0x15,0x44,0xe3,0x67,0x87,0x5b,0x29,0x91,0x52,0x0f,0x96,0x07,0x05,0x40,0xf1,0x4a,0x0e,
|
|
0x2e,0x65,0x1c,0x3c,0x43,0x28,0x5f,0xf0,0xf8,0xeb,0xf1,0x33,0x88,0x66,0x31,0x40,0x77,0x6b,0xf6,0x0c,
|
|
0x78,0x9b,0xc2,0x9c,0x18,0x3a,0x98,0x1e,0xad,0x41,0x5b,0x10,0x4a,0xef,0x61,0xd6,0x29,0xdc,0xe2,0x46,
|
|
0x7b,0x2f,0xaf,0xca,0x87,0x5e,0x2d,0x65,0x1b,0xa5,0xa4,0xa3,0xf5,0x98,0x69,0xa0,0x1e,0x5f,0x2e,0x72,
|
|
0x0e,0xfb,0x44,0xd2,0x29,0xbf,0x88,0x55,0xb7,0x02,0x7e,0x3c,0x11,0x3c,0xff,0x0d,0xa1,0xf6,0xd8,0x3d
|
|
};
|
|
for(int i = 0 ;i< 200 ;i++)Obtc->const_data[i] = temp[i];
|
|
|
|
CHeavyHash_init(Obtc, &Obtc->CHeavyHash_p, matrix);
|
|
CHeavyHash_Write(&Obtc->CHeavyHash_p, (const unsigned char*)in, len);
|
|
CHeavyHash_Finalize(Obtc, &Obtc->CHeavyHash_p, (unsigned char*)out);
|
|
}
|
|
|
|
|
|
|
|
void opticalbtc_hash(const char* in, char* out, int len)
|
|
{
|
|
uint8_t *ptr = (uint8_t*) in;
|
|
uint256 seed, hashprev;
|
|
uint64_t matrix[64*64];
|
|
|
|
Obtc_t Obtc;
|
|
|
|
CSHA3_256_init(&Obtc, &Obtc.CSHA3_256_p);
|
|
memcpy(Obtc.data_r,ptr, 32);
|
|
GenerateHeavyHashMatrix_t(&Obtc, seed, matrix);
|
|
serialize_heavyhash(&Obtc, matrix, in, out, len);
|
|
|
|
}
|
|
|